Lets visualize our data with Bar Plot which is present in Seaborn library.
We can pass various parameters to barplot like hue, confidence interval (ci), capsize, estimator (mean, median etc.), order, palette, color, saturation etc.
Lets explore Bar Plot using Tips dataset.
Step 1: Import required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
Step 2: Load Tips dataset
tips=sns.load_dataset('tips')
tips.head()
Step 3: Explore data using Bar Plot
sns.barplot(x='day', y='total_bill', data=tips)
Horizontal Bar Plot
sns.barplot(x='total_bill', y='day', data=tips)
Set color and saturation level
sns.barplot(x='day', y='total_bill', data=tips, color='green')
sns.barplot(x='day', y='total_bill', data=tips, color='green', saturation=0.3)
By default, estimator is mean, you can also set it to median or anything else
sns.barplot(x='day', y='total_bill', data=tips, estimator=np.median)
Add hue parameter
sns.barplot(x='day', y='total_bill', data=tips, hue='sex')
sns.barplot(x='day', y='total_bill', data=tips, hue='sex', palette='autumn')
sns.barplot(x='day', y='total_bill', data=tips, hue='sex', color='green')
sns.barplot(x='day', y='total_bill', data=tips, hue='sex', palette='spring', order=['Sat', 'Sun', 'Thur', 'Fri'])
sns.barplot(x='sex', y='total_bill', data=tips, hue='sex', palette='spring', order=['Male', 'Female'])
Add confidence interval and capsize parameter
Black lines in bar plot represent error parts. We can set the capsize and confidence interval (ci) of the error parts. A confidence interval is a range of values, derived from sample statistics, that is likely to contain the value of an unknown population parameter.
sns.barplot(x='day', y='total_bill', data=tips, ci=99)
sns.barplot(x='day', y='total_bill', data=tips, ci=34)
sns.barplot(x='day', y='total_bill', data=tips, capsize=0.3)
You can download my Jupyter notebook from here. I recommend to also try above code with Iris dataset.
We can pass various parameters to barplot like hue, confidence interval (ci), capsize, estimator (mean, median etc.), order, palette, color, saturation etc.
Lets explore Bar Plot using Tips dataset.
Step 1: Import required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
Step 2: Load Tips dataset
tips=sns.load_dataset('tips')
tips.head()
Step 3: Explore data using Bar Plot
sns.barplot(x='day', y='total_bill', data=tips)
Horizontal Bar Plot
sns.barplot(x='total_bill', y='day', data=tips)
Set color and saturation level
sns.barplot(x='day', y='total_bill', data=tips, color='green')
sns.barplot(x='day', y='total_bill', data=tips, color='green', saturation=0.3)
By default, estimator is mean, you can also set it to median or anything else
sns.barplot(x='day', y='total_bill', data=tips, estimator=np.median)
Add hue parameter
sns.barplot(x='day', y='total_bill', data=tips, hue='sex')
sns.barplot(x='day', y='total_bill', data=tips, hue='sex', palette='autumn')
sns.barplot(x='day', y='total_bill', data=tips, hue='sex', color='green')
sns.barplot(x='day', y='total_bill', data=tips, hue='sex', palette='spring', order=['Sat', 'Sun', 'Thur', 'Fri'])
sns.barplot(x='sex', y='total_bill', data=tips, hue='sex', palette='spring', order=['Male', 'Female'])
Add confidence interval and capsize parameter
Black lines in bar plot represent error parts. We can set the capsize and confidence interval (ci) of the error parts. A confidence interval is a range of values, derived from sample statistics, that is likely to contain the value of an unknown population parameter.
sns.barplot(x='day', y='total_bill', data=tips, ci=99)
sns.barplot(x='day', y='total_bill', data=tips, ci=34)
sns.barplot(x='day', y='total_bill', data=tips, capsize=0.3)
You can download my Jupyter notebook from here. I recommend to also try above code with Iris dataset.
No comments:
Post a Comment