Lets visualize our data with Pair Grid and Pair Plot which are present in Seaborn library. We can draw various plots (like scatter plot, histogram and KDE plot) in Pair Grid. Pair Plot shows histograms at diagonal and scatter plots at rest of the grid cells by default.
We can pass various parameters to PairGrid like hue, hue_kws, vars, x_vars, y_vars, palette, marker (diamond, plus sign, circle, square) etc.
We can pass various parameters to pairplot like kind, diag_kind, hue, vars, x_vars, y_vars, height etc.
Lets explore Pair Grid and Pair Plot using Iris dataset.
Step 1: Import required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
Step 2: Load Tips datasets
iris=sns.load_dataset('iris')
iris.head()
Step 3: Explore data using Pair Grid
Draw scatter plots on all grid cells
x = sns.PairGrid(iris)
x = x.map(plt.scatter)
Draw histograms on diagonals and scatter plots on rest of the grid cells
x = sns.PairGrid(iris)
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
Draw histograms on diagonals, scatter plots at top and KDE plots at bottom
x = sns.PairGrid(iris)
x = x.map_diag(plt.hist)
x = x.map_upper(plt.scatter)
x = x.map_lower(sns.kdeplot)
Add hue and legend
x = sns.PairGrid(iris, hue='species')
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
x = sns.PairGrid(iris, hue='species')
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
x = x.add_legend()
x = sns.PairGrid(iris, hue='species')
x = x.map_diag(plt.hist)
x = x.map_upper(plt.scatter)
x = x.map_lower(sns.kdeplot)
x = x.add_legend()
x = sns.PairGrid(iris, hue='species', palette='Blues_d')
x = x.map_diag(plt.hist, histtype='step', linewidth=2, edgecolor='black')
x = x.map_offdiag(plt.scatter, edgecolor='black')
x = x.add_legend()
x = sns.PairGrid(iris, hue='species', hue_kws={'marker' : ['D', 's', '+']})
x = x.map(plt.scatter, s=30, edgecolor='black')
x = x.add_legend()
Add specific variables
x = sns.PairGrid(iris, vars=['petal_length', 'petal_width'])
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
x = sns.PairGrid(iris, x_vars=['petal_length', 'petal_width'], y_vars=['sepal_length', 'sepal_width'])
x = x.map(plt.scatter)
Step 4: Explore data using Pair Plot
sns.pairplot(iris)
Add regression line to scatter plot
sns.pairplot(iris, kind='reg')
Change diagonal to KDE, by default its histogram
sns.pairplot(iris, diag_kind='kde')
Add hue parameter
sns.pairplot(iris, hue='species')
sns.pairplot(iris, hue='species', kind='reg')
sns.pairplot(iris, hue='species', kind='reg', diag_kind='kde')
sns.pairplot(iris, hue='species', kind='reg', diag_kind='hist')
Add specific variables
sns.pairplot(iris, vars=['petal_length', 'petal_width'], height=4)
sns.pairplot(iris, x_vars=['petal_length', 'petal_width'], y_vars=['sepal_length', 'sepal_width'])
You can download my Jupyter notebook from here. I recommend to also try above code with Tips dataset.
We can pass various parameters to PairGrid like hue, hue_kws, vars, x_vars, y_vars, palette, marker (diamond, plus sign, circle, square) etc.
We can pass various parameters to pairplot like kind, diag_kind, hue, vars, x_vars, y_vars, height etc.
Lets explore Pair Grid and Pair Plot using Iris dataset.
Step 1: Import required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
Step 2: Load Tips datasets
iris=sns.load_dataset('iris')
iris.head()
Step 3: Explore data using Pair Grid
Draw scatter plots on all grid cells
x = sns.PairGrid(iris)
x = x.map(plt.scatter)
Draw histograms on diagonals and scatter plots on rest of the grid cells
x = sns.PairGrid(iris)
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
Draw histograms on diagonals, scatter plots at top and KDE plots at bottom
x = sns.PairGrid(iris)
x = x.map_diag(plt.hist)
x = x.map_upper(plt.scatter)
x = x.map_lower(sns.kdeplot)
Add hue and legend
x = sns.PairGrid(iris, hue='species')
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
x = sns.PairGrid(iris, hue='species')
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
x = x.add_legend()
x = sns.PairGrid(iris, hue='species')
x = x.map_diag(plt.hist)
x = x.map_upper(plt.scatter)
x = x.map_lower(sns.kdeplot)
x = x.add_legend()
x = sns.PairGrid(iris, hue='species', palette='Blues_d')
x = x.map_diag(plt.hist, histtype='step', linewidth=2, edgecolor='black')
x = x.map_offdiag(plt.scatter, edgecolor='black')
x = x.add_legend()
x = sns.PairGrid(iris, hue='species', hue_kws={'marker' : ['D', 's', '+']})
x = x.map(plt.scatter, s=30, edgecolor='black')
x = x.add_legend()
Add specific variables
x = x.map_diag(plt.hist)
x = x.map_offdiag(plt.scatter)
x = sns.PairGrid(iris, x_vars=['petal_length', 'petal_width'], y_vars=['sepal_length', 'sepal_width'])
x = x.map(plt.scatter)
Step 4: Explore data using Pair Plot
sns.pairplot(iris)
Add regression line to scatter plot
sns.pairplot(iris, kind='reg')
Change diagonal to KDE, by default its histogram
sns.pairplot(iris, diag_kind='kde')
Add hue parameter
sns.pairplot(iris, hue='species')
sns.pairplot(iris, hue='species', kind='reg')
sns.pairplot(iris, hue='species', kind='reg', diag_kind='kde')
sns.pairplot(iris, hue='species', kind='reg', diag_kind='hist')
Add specific variables
sns.pairplot(iris, vars=['petal_length', 'petal_width'], height=4)
sns.pairplot(iris, x_vars=['petal_length', 'petal_width'], y_vars=['sepal_length', 'sepal_width'])
You can download my Jupyter notebook from here. I recommend to also try above code with Tips dataset.
No comments:
Post a Comment