Lets visualize our data with Joint Plot which is present in Seaborn library. By default, Joint Plot uses Scatter Plot and Histogram. Joint Plot can also display data using Kernel Density Estimate (KDE) and Hexagons. We can also draw a Regression Line in Scatter Plot. By using spearmanr function, we can print the correlation between two variables.
We can pass various parameters to jointplot like kind (reg, hex, kde), stat_func(spearmanr), color, size, ratio etc.
Spearmanr Parameter
Step 1: Import required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import spearmanr
Step 2: Load Tips dataset
tips=sns.load_dataset('tips')
tips.head()
Step 3: Explore data using Joint Plot
sns.jointplot(x='total_bill', y='tip', data=tips)
Add regression line to scatter plot and kernel density estimate to histogram
sns.jointplot(x='total_bill', y='tip', data=tips, kind='reg')
Display kernel density estimate instead of scatter plot and histogram
sns.jointplot(x='total_bill', y='tip', data=tips, kind='kde')
Display hexagons instead of points in scatter plot
sns.jointplot(x='total_bill', y='tip', data=tips, kind='hex')
Display correlation using spearmanr function
sns.jointplot(x='total_bill', y='tip', data=tips, stat_func=spearmanr)
Cosmetic parameters like color, size and ratio
sns.jointplot(x='total_bill', y='tip', data=tips, color='green')
sns.jointplot(x='total_bill', y='tip', data=tips, ratio=4, size=6)
You can download my Jupyter notebook from here. I recommend to also try above code with Iris dataset.
We can pass various parameters to jointplot like kind (reg, hex, kde), stat_func(spearmanr), color, size, ratio etc.
Spearmanr Parameter
- Spearmanr parameter displays the correlation between two variables.
- Value varies between -1 and +1 with 0 implying no correlation.
- Correlations of -1 or +1 imply an exact monotonic relationship.
- Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
- Spearmanr correlation does not assume that both variables are normally distributed.
For more details on spearmanr parameter, please visit documentation.
Lets explore Joint Plot using Tips dataset.
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import spearmanr
Step 2: Load Tips dataset
tips=sns.load_dataset('tips')
tips.head()
Step 3: Explore data using Joint Plot
sns.jointplot(x='total_bill', y='tip', data=tips)
Add regression line to scatter plot and kernel density estimate to histogram
sns.jointplot(x='total_bill', y='tip', data=tips, kind='reg')
Display kernel density estimate instead of scatter plot and histogram
sns.jointplot(x='total_bill', y='tip', data=tips, kind='kde')
Display hexagons instead of points in scatter plot
sns.jointplot(x='total_bill', y='tip', data=tips, kind='hex')
Display correlation using spearmanr function
sns.jointplot(x='total_bill', y='tip', data=tips, stat_func=spearmanr)
Cosmetic parameters like color, size and ratio
sns.jointplot(x='total_bill', y='tip', data=tips, color='green')
sns.jointplot(x='total_bill', y='tip', data=tips, ratio=4, size=6)
You can download my Jupyter notebook from here. I recommend to also try above code with Iris dataset.
No comments:
Post a Comment